
www.manaraa.com

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 8, AUGUST 2008 3457

Communication Over MIMO X Channels:
Interference Alignment, Decomposition,

and Performance Analysis
Mohammad Ali Maddah-Ali, Member, IEEE, Abolfazl Seyed Motahari, Student Member, IEEE, and

Amir Keyvan Khandani, Member, IEEE

Abstract—In a multiple-antenna system with two transmitters
and two receivers, a scenario of data communication, known as the
X channel, is studied in which each receiver receives data from both
transmitters. In this scenario, it is assumed that each transmitter is
unaware of the other transmitter’s data (noncooperative scenario).
This system can be considered as a combination of two broad-
cast channels (from the transmitters’ points of view) and two mul-
tiple-access channels (from the receivers’ points of view). Taking
advantage of both perspectives, two signaling schemes for such a
scenario are developed. In these schemes, some linear filters are
employed at the transmitters and at the receivers which decompose
the system into either two noninterfering multiple-antenna broad-
cast subchannels or two noninterfering multiple-antenna multiple-
access subchannels. The main objective in the design of the filters
is to exploit the structure of the channel matrices to achieve the
highest multiplexing gain (MG). It is shown that the proposed non-
cooperative signaling schemes outperform other known noncoop-
erative schemes in terms of the achievable MG. In particular, it is
shown that in some specific cases, the achieved MG is the same as
the MG of the system if full cooperation is provided either between
the transmitters or between the receivers.

In the second part of the paper, it is shown that by using mixed
design schemes, rather than decomposition schemes, and taking
the statistical properties of the interference terms into account, the
power offset of the system can be improved. The power offset rep-
resents the horizontal shift in the curve of the sum–rate versus the
total power in decibels.

Index Terms—Degrees of freedom, interference alignment,
interference channels, multiple-antenna systems, multiple-input
multiple-output (MIMO) multiuser systems, MIMO X channels,
multiplexing gain, noncooperative communication, power offset,
space-division multiple access.
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I. INTRODUCTION

W IRELESS technology has been advancing at an ex-
ponential rate, due to the increasing expectations for

multiple-media services. This, in turn, necessitates the de-
velopment of novel signaling techniques with high spectral
efficiency. Using multiple antennas at both ends of wireless
links is known as a unique solution to support high-data-rate
communication [1], [2]. Multiple-antenna systems incorporate
additional dimension of space to the transmission, resulting
in a multiplicative increase in the overall throughput [2], [3].
The multiplicative increase in the rate is measured by a metric
known as the multiplexing gain (MG), , defined as the ratio of
the sum–rate of the system, , over the logarithm of the total
power in the high power regime, i.e.,

(1)

It is widely known that in a point-to-point multiple-antenna
system, with transmit and receive antennas, the MG is

[2]. In multiple-antenna multiple-user systems,
when the full cooperation is provided at least at one side of the
links (either among the transmitters or among the receivers), the
system still enjoys a multiplicative increase in the throughput
with the smaller value of the following two quantities: the total
number of transmit antennas, and the total number of receive
antennas. For example, in a multiple-access channel with two
transmitters, with and antennas, and one receiver
with antennas, the MG is equal to [4].
Similarly, in a multiple-antenna broadcast channel, with one
transmitter, equipped with antennas, and two receivers,
equipped with and antennas, the MG is equal to

[4]. However, for the case that cooperation
is not available, the performance of the system will be deteri-
orated due to the interference of the links over each other. For
example, in a multiple-antenna interference channel with two
transmitters and two receivers, each equipped with antennas,
the MG of the system is [4].

Extensive research efforts have been devoted to the mul-
tiple-antenna interference channels. In [5], the capacity region
of the multiple-input single-output (MISO) interference channel
with strong interference (see [6]) and the capacity region of the
single-input multiple-output (SIMO) interference channel with
very strong interference (see [7]) are characterized. In [8], the
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superposition coding technique is utilized to derive an inner
bound for the capacity of the multiple-input multiple-output
(MIMO) interference channels. In [9], several numerical
schemes are proposed to compute suboptimal transmit covari-
ance matrices for the MIMO interference channels. In [4], the
MG of the MIMO interference channel with general configura-
tion for the number of transmit and receive antennas is derived.
To increase the MG of such systems, the full cooperation among
transmitters is proposed in [10], [11], which reduces the system
to a single MIMO broadcast channel. To provide such a strong
cooperation, an infinite capacity link connecting the transmit-
ters, is presumed. In [12], the performance of single-antenna
interference channels is evaluated, where the transmitters or
receivers rely on the same channel, used for transmission, to
provide cooperation. It is shown that the resulting MG is still
one, i.e., this type of cooperation is not helpful in terms of the
MG. In [4], a cooperation scheme in the shared communication
channel for the MIMO interference systems is proposed and
shown that such a scheme does not increase the MG.

In this paper, we propose a new signaling scenario in mul-
tiple-antenna systems with two transmitters and two receivers.
In this scenario, each receiver receives data from both transmit-
ters. It is assumed that neither the transmitters nor the receivers
cooperate in signaling. In other words, each transmitter is un-
aware of the data of the other transmitter. Similarly, each re-
ceiver is unaware of the signal received by the other receiver.
This scenario of signaling has several applications. For example,
in a wireless system where two relay nodes are utilized to extend
coverage area or in a system where two base stations provide
different services to the users. This system can be considered
as a combination of two broadcast channels (from the transmit-
ters’ points of view) and two multiple-access channels (from the
receivers’ points of view). By taking advantage of both perspec-
tives, it is shown that by using some linear filters at the trans-
mitters and the receivers, the system is decomposed to either
two noninterfering multiple-antenna broadcast subchannels or
two noninterfering multiple-antenna multiple-access subchan-
nels. It is proven that such a scheme outperforms other known
noncooperative schemes in terms of the achievable MG. In par-
ticular, it is shown that in the specific case that both receivers
(transmitters) are equipped with antennas, the total MG of

is achievable, where the two transmitters (receivers)
have and antennas, respectively. Note that even if the
full cooperation is provided either between the transmitters or
between the receivers, the maximum MG is still . Next, it is
argued that such decomposition schemes result in some degra-
dation (power offset) in the performance of the system. To over-
come this problem, a design is proposed in which the signaling
scheme is jointly designed for both subchannels (two broadcast
or two multiple-access subchannels).

The authors proposed this scenario of signaling and estab-
lished the possibility of achieving higher MG initially in [13].
Later in [14], we extended the scheme proposed in [13] to more
general configurations for the number of transmit and receive
antennas, and developed two signaling schemes based on: i)
linear operations at the receivers and the dirty paper coding at
the transmitters, and ii) linear operations at the transmitters and
the successive decoding at the receivers. In addition, we intro-

duced the concept of interference alignment for the first time
as the main tool to achieve higher multiplexing gain (see [14,
Sec. IV-B]). Then, in [15], the idea of interference alignment
is elegantly used to show that zero-forcing scheme can achieve
the multiplexing gain of the X channel. Furthermore, in [15], an
upper bound on the MG of the X channels, where each trans-
mitter and receiver is equipped with antennas, is derived. In
[16], the X channel with the partial and asymmetric coopera-
tion among transmitters has been considered, and the MG of the
system has been derived. Recently, in [17], it has been shown
that by extending the X channel in time, the gap between the
achievable MG and the upper bound proposed in [15] is closed.

The rest of the paper is organized as follows. In Section II,
the system model is explained. In Section III, the two signaling
schemes which decompose the system into two broadcast or
two multiple-access subchannels are explained. The perfor-
mance analysis of the scheme, including computing the MG
and the power offset (for some special cases) is presented
in Section IV. In Section V, the decomposition scheme is
modified and a joint design for signaling scheme is proposed.
Simulation results are presented in Section VI. Concluding
remarks are presented in Section VII. Notation: All boldface
letters indicate vectors (lower case) or matrices (upper case).

denotes transpose conjugate operation, and represents
the set of complex numbers. represents the set of
all complex matrices with mutually orthogonal and
normal columns. means that each column of the matrix

is orthogonal to all columns of the matrix . The subspace
spanned by columns of is represented by . The null
space of the matrix is denoted by . Identity matrix is
represented by . Adopted from MATLAB notation,
denotes a vector including the entries to of the vector . The
th column of the matrix is shown by .

II. CHANNEL MODEL

We consider a MIMO system with two transmitters and two
receivers. Transmitter , , is equipped with antennas
and receiver , , is equipped with antennas. This
configuration of antennas is shown by . For
simplicity and without loss of generality, it is assumed that

and (2)

Assuming a flat-fading environment, the channel between
transmitter and receiver is represented by the channel matrix

, where . The received vector
by receiver , , is given by

(3)

where represents the transmitted vector by trans-
mitter . The vector is a white Gaussian noise with
zero mean and identity covariance matrix. The power of is

subject to the constraint , . de-
notes the total transmit power, i.e., .

In the proposed scenario, the transmitter sends data
streams to receiver 1 and data streams to receiver 2.

Throughout the paper, we have the following assumptions.
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• The perfect information of the all channel matrices ,
is available at both transmitters and at both

receivers.
• Each transmitter is unaware of the data sent by the other

transmitter, which means that there is no cooperation be-
tween transmitters. Similarly, receivers do not cooperate.

III. DECOMPOSITION SCHEMES

In what follows, we propose two signaling schemes de-
pending on the values of . In the first
scheme, by using linear transformations at the transmitters
and at the receivers, the system is decomposed into two non-
interfering broadcast subchannels. Therefore, we can use any
signaling scheme, developed for the MIMO broadcast channels,
over the resulting subchannels. As a dual of the first scheme,
in the second scheme, linear transformations are utilized to
decompose the system into two noninterfering multiple-ac-
cess subchannels. It is shown that depending on the value of

, one of the two schemes offer a higher MG.
In the rest of the paper, it is assumed that

(4)

(5)

Otherwise, if , the maximum multiplexing
gain of is achievable by a simple broadcast channel
formed by the first transmitter and the two receivers. Similarly,
if , then the maximum multiplexing gain of

is achievable by a simple multiple-access channel in-
cluding the two transmitters and the first receiver. The two sig-
naling schemes presented in this paper cover all the possibilities
for the number of transmit and receive antennas, excluding the
aforementioned cases. The optimality is proven for some spe-
cial cases of practical interest.

To attain the highest MG, we take advantage of the null spaces
of the direct or cross links.

Defintion 1: We call a system irreducible, if

Irreducible Type I: (6)

or

Irreducible Type II: (7)

Otherwise the system is called reducible.

Unlike the irreducible systems, a portion of the achieved
MG in a reducible X channel is attained through exploiting
the null spaces of the direct or cross links. In the reducible
systems, the null spaces of the links provide the possibility
to increase the number of data streams sent from one of the
transmitters to one of the receivers, without imposing any
interference on the other receiver or restricting the signaling
space of the other transmitter. By excluding null spaces
utilized to increase the MG, the system is reduced to an
equivalent system with antennas, where

. As will be explained

Fig. 1. Scheme one: decomposition of the system into two broadcast subchan-
nels.

later, the null spaces of the links in the reducible systems are
exploited to the extent that the equivalent (reduced) system is
not reducible anymore.

Defintion 2: If the reduced X channel satisfies the condition
of the Type I irreducible systems, i.e., ,
the original system is called reducible to Type I. Similarly, if

, the original system is called reducible
to Type II.

In what follows, it is shown that the Type I irreducible systems
and the reducible systems to Type I can be decomposed into two
noninterfering broadcast sub-channels. Moreover, it is shown
that the Type II irreducible systems, and the reducible systems
to Type II can be decomposed into two noninterfering multiple-
access subchannels.

We define , , as the number of data streams
transmitted from transmitter to receiver , excluding the
number of extra data streams attained through exploiting the
null spaces of the links. In other words, represents the
number of data streams in the equivalent (reduced) channel.

A. Scheme I—Decomposition of the System Into Two
Broadcast Subchannels

As depicted in Fig. 1, in this scheme, the transmit filter
is employed at transmitter , . There-

fore, the transmitted vectors , , are equal to

(8)

where contains data streams for receiver
one and data streams for receiver two. The transmit filters

, , have two functionalities: i) Confining the transmit
signal from transmitter to a -dimensional subspace
which provides the possibility to decompose the system into two
broadcast subchannels by using linear filters at the receivers. ii)
Exploiting the null spaces of the channel matrices to achieve the
highest multiplexing gain.

At each receiver, two parallel receive filters are employed.

The received vector is passed through the filter , which
is used to null out the signal coming from the second trans-
mitter. The data streams, sent by transmitter one intended

to receiver one, can be decoded from , the output of .
Similarly, to decode data streams, sent by transmitter two
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Fig. 2. Scheme one: The resulting noninterfering MIMO broadcast subchan-
nels.

to receiver one, the received vector is passed through the re-

ceive filter , which is used to null out the signal coming from
transmitter one. Receiver two has a similar structure with par-

allel receive filters and . Later, it is shown that if ,
, satisfy a set of inequalities, then it is possible to de-

sign and to meet the desired features explained earlier.
It means that the system is decomposed into two noninterfering
MIMO broadcast sub-channels (see Fig. 2).

Next, we explain how to select the design parameters in-
cluding the number of data streams , and the
transmit/receive filters. The primary objective is to prevent the
saturation of the rate of each stream in the high signal-to-noise
ratio (SNR) regime. In other words, the MG of the system is

.
The integer variables , , defined as follows, will

be useful in our subsequent discussions:
• denotes the dimension of ;
• denotes the dimension of ;
• denotes the dimension of ;
• denotes the dimension of .
In the sequel, we categorize the design scheme into the

four general cases depending on , where in
all cases, the system is either irreducible Type I or reducible
to Type I. To facilitate the derivations, we use the auxiliary
variables , , and , for . As will be explain
later, for each case, and are computed directly as a
function of and for . Then, , ,
are selected such that the following constraints are satisfied:

(9)

(10)

(11)

(12)

(13)

(14)

Each of the first four inequalities corresponds to one of the pa-
rameters , , in the sense that if , ,
is zero, the corresponding inequality is removed from the set
of constraints. After choosing , , for each case,

, , are computed as function of , ,
as will be explained later. Note that we have many options to

choose , . It is shown that as long as the integers
, , satisfy (9)–(14), the system achieves the MG of

. However, it turns out that to achieve
the highest MG, , , should be selected such that

is maximum.
Next, for each of the four cases, we explain the following.

1) How to compute the auxiliary variables and as a
function of and , .

2) After choosing , , satisfying (9)–(14), how to
compute , .

3) How to choose the transmit filters , .
4) How to compute , .
Having completed these steps, the procedure of computing

the receive filters , , is similar for all cases. Later,
we will show that this scheme decomposes the system into two
noninterfering broadcast subchannels.

Scheme I–Case I: : In this case, the
system is irreducible. Therefore, the equivalent system is the
same as the original system i.e., , , and

, .

Using the above parameters, we choose , , sub-
ject to (9)–(14) constraints. Since we do not exploit the null
space of any of the links to transmit data streams, is the same
as , i.e., , . In this case, and are
randomly chosen from and ,
respectively.

Regarding the definition of , , it is easy to see
that

(15)

Scheme I–Case II: : In this case, at
transmitter one, -dimensional subspace is
exploited to transmit data streams from transmitter one
to receiver one without imposing any interference at receiver
two. In other words, while the component of in
does not impose any interference at receiver two, it provides
the possibility to increase the number of data streams sent from
transmitter one to receiver one by . Let us exclude
the -dimensional subspace from the avail-
able space at transmitter one. In addition, let us exclude the

-dimensional subspace from the
available space at receiver one. Then, the system is reduced to
an X channel with equivalent antennas

or

(16)

Clearly, , therefore the original system
is reducible to Type I.

Let us select , , subject to (9)–(14) constraints.
, , give us the number of data streams in the re-

duced X channel, excluding the data streams, sent from
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transmitter one to receiver one relying on . Clearly, the
numbers of data streams in the original system are computed as,

(17)

is chosen as

(18)

where

(19)

(20)

Such a structure for guarantees the full usage of for
signaling.

is randomly chosen from .
It is easy to see that

(21)

Scheme I–Case III: and
:

In this case
i) at transmitter one, -dimensional subspace

is utilized to increase the number data streams
sent from transmitter one to receiver one by
without imposing interference at receiver two;

ii) at transmitter two, -dimensional subspace
is utilized to increase the number data streams

sent from transmitter two to receiver one by
without imposing interference at receiver two.

We exclude
i) -dimensional subspace from the sig-

naling space at transmitter one;
ii) -dimensional subspace from the sig-

naling space at transmitter two;
iii) -dimensional subspace

from the signaling
space at receiver one.

Then, the reduced system is an equivalent X channel with
, where

(22)
where . Therefore, the original system
is reducible to Type I. The number of data streams in the equiv-
alent channel, , , are selected subject to (9)–(14)
constraints. Then, we have

(23)

is chosen as

(24)

where

(25)

(26)

is chosen as

(27)

where

(28)

(29)

It is easy to see that

(30)

Scheme I–Case IV: and
:

In this case, at transmitter one, i) -dimen-
sional subspace is utilized to increase the number
data streams sent from transmitter one to receiver one by

without imposing interference at receiver two, ii)
-dimensional subspace is exploited to in-

crease the number data streams from transmitter one to receiver
two by , without imposing interference at receiver
two. By excluding the utilized subspaces at transmitter one,
receiver one, and receiver two, the equivalent system is an X
channel with where

(31)

It is easy to see that . Therefore, the
original system is reducible to Type I. , , are se-
lected subject to (9)–(14) constraints. Then

(32)

In addition, is chosen as

(33)

where

(34)

(35)
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is randomly chosen from .
It is easy to see that

(36)

The next steps of the algorithm are the same for all of the
aforementioned cases. We define

(37)

, , are chosen such that

(38)

(39)

(40)

(41)

According to the definition of , one can always choose such
matrices. Clearly, any signal sent by transmitter one does not

pass through the filters and . Similarly, any signal sent

by transmitter two does not pass through the filters and .
We define

(42)

(43)

and

(44)

Therefore, the system is decomposed into two noninterfering
broadcast channels. The MIMO broadcast channel viewed from
transmitter 1 is modeled by (see Fig. 2)

(45)

and the MIMO broadcast channel viewed from transmitter two
is modeled by (see Fig. 2)

(46)

B. Scheme II—Decomposition of the System Into Two
Multiple-Access Subchannels

This scheme is indeed the dual of the scheme one, detailed
in Section III-A (see Figs. 3 and 4). The discussion related to
Scheme II follows a path similar to what is discussed above for
Scheme I as given in Appendix I.

IV. PERFORMANCE EVALUATION

The decomposition schemes, presented in Section III, sim-
plify the procedure of the performance evaluation for the X
channels in the high-SNR regime. In what follows, the MG of
the X channel is studied. In addition, for some special cases, a
metric known as power offset is evaluated.

Fig. 3. Scheme II: Decomposition of the system into two multiple-access sub-
channels.

Fig. 4. Scheme II: The resulting noninterfering MIMO multiple-access sub-
channels.

A. Multiplexing Gain

Theorem 3: The MIMO X channel with
antennas, decomposed into two noninterfering broadcast or
multiple-access subchannels, achieves the multiplexing gain of

, if , , are selected according
to the schemes presented in Section III.

Proof: As explained in Section III-A, the X channel
is decomposed into two noninterfering broadcast subchan-
nels(45) and (46). The first broadcast subchannel is formed
with the channel matrices and

. The inequalities (9) and (12)
guarantee that and . Note
that the input of the MIMO broadcast subchannel viewed from
transmitter one is . On the other hand, is chosen such that

. Therefore, Hence, the power
constraints on the input signals is the same as the power con-
straint on . Consequently, we are free to choose any covari-
ance matrix for the input vector , subject to .

Therefore, as long as the matrix is full rank, the
broadcast subchannel achieves the MG of by sending

data streams to receiver one and data streams to re-

ceiver two. It is easy to see that the is full rank with
probability one. Similarly, the second broadcast subchannel is
formed with the channel matrices ,
and . Constraints (11) and (12), re-
spectively, guarantee that and .

Therefore, as long as the matrix is full rank, the
second broadcast subchannel achieves the MG of by
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sending data streams to receiver one and data streams
to receiver two.

A similar arguments are valid for the scheme presented in
Section III-B.

Next, the MG of some special cases is computed in a closed
form.

Corollary 4: For the special case of in the
scheme of Section III-A, the MG of is achievable
where the total number of transmit antennas is equal to , which
are divided between transmitters as and .

Proof: By direct verification in the Scheme I–Case I.

Corollary 5: In the special case of in the
scheme presented in Section III-B, the MG of is
achievable where the total number of receive antennas is equal
to , which are divided between receivers as and

.
Proof: By direct verification in the Scheme II–Case I.

Regarding Theorem 3, the MG of the X channel outperforms
the MG of the interference channel with the same number
of antennas. For example, the MGs of a X channels with

, , antennas are and
respectively, while the MGs of the interference channels with
the same number of antennas are, respectively, and
[4]. For all the cases listed in Corollaries 4 and 5, the MG
of the X channel is the same as the MG of the system with
full cooperation between transmitters or between receivers.
For example, the multiplexing gains of the X channels with

, , , and antennas are,
respectively, and .

The improvement in MG of the X channels as compared to
the interference channels can be attributed to two phenomena as
explained next.

1) Interference Alignment: For simplicity, we consider an X
channel with antennas, and assume that trans-
mitter sends one data stream to receiver , .
Therefore, there are four data streams in the shared wireless
medium. At receiver one, we are interested in decoding
and , while and are treated as interference. The
signaling scheme is designed such that at the receiver one
terminal, the interference terms and are received
in the directions for which the distractive components are
along each other. Therefore, at receiver one with three an-
tennas, one direction is occupied with the destructive com-
ponent of both interference terms and , while we
have two interference-free dimensions to receive and

. The design scheme provides similar condition at the
receiver two terminal, while and are desired data
streams and and are interference terms. Such over-
laps of interference terms in each receiver save the avail-
able spatial dimensions to exploit the highest MG.

2) Maximizing the Possibility of Cooperation Among Data
Streams: It is well known that the MG for a point-to-pint
MIMO channel, a MIMO broadcast channel, and a MIMO
multiple-access channel is the same, as long as in all three
systems we have the same total number of transmit an-
tennas and the same total number of receive antennas. The

immediate conclusion is that to attain the maximum MG,
the cooperation at one side of the communication link is
enough.
Now, consider an interference channel with
and , and assume that two data streams

and are sent from transmitter one to receiver one
and two data streams and are sent from transmitter
two to receiver two. In this scenario, the data streams
and have the possibility to cooperate at two points: i)
at transmitter one, and ii) at receiver one. Similarly, the
data streams and have the possibility to cooperate
at two points: i) at transmitter two, and ii) at receiver two.
Regarding the aforementioned discussion, the system does
not gain MG from the provided cooperation for and
at both transmitter one and receiver one. Similar argument
is valid for and . However, the performance of the
system is deteriorated because there is no possibility to
cooperate between and .
Let us consider an X channels with antennas.
In the X channels, the cooperation between and is
provided at transmitter one, and the cooperation between

and is provided at transmitter two. Similarly, the
cooperation between and is provided at receiver
one, and the cooperation between and is provided
at receiver two.

B. Power Offset

In Corollaries 4 and 5, some special cases are listed for
which the MG of the X channel is the same as the MG of a
point-to-point MIMO system resulting from full cooperation
between transmitters and/or between receivers. However, it
does not mean that the system does not gain any improvement
through cooperation. The gain of the cooperation is reflected
in a metric known as the power offset. The power offset is
defined as the negative of the zero-order term in the expansion
of the sum–rate with respect to the total power, normalized
with multiplexing gain, i.e.,

(47)

where denotes the total power, and denotes the power
offset in 3-dB units (see Fig. 5). In this definition, it is assumed
that the noise is normalized as in system model (3). The power
offset was first introduced in [18] to evaluate the performance of
the different code-division multiple-access (CDMA) schemes.
Later, the power offset for MIMO channels in [19] and some
special cases of MIMO broadcast channels in [20] were com-
puted. In what follows, the result of [20] is adopted to compute
the power offset of some special cases of MIMO X channels.

Theorem 6: In an X channel with
antennas ( is a positive integer number),

where the entries of channel matrices have Rayleigh distri-
bution, if the decomposition scheme is employed, the power
offset is equal to

(48)
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Fig. 5. Power offset of the MIMO point-to-point channels and the MIMO X
channel.

in 3-dB units, where , ,

(49)

, , and .
Furthermore, the power offset of the X channel with

antennas with respect to a MIMO Rayleigh
channel with transmit antennas and receive antennas is
equal to

(50)

in 3-dB units.
Proof: In this case, the transmit filter , is randomly

chosen from , independent of and . In addi-
tion, the receive filters and
are independent of and , respectively. Therefore, the
matrices and , defined in (42), have Rayleigh distribu-
tion. Similar arguments are valid for and . Therefore,
the system is decomposed into two broadcast subchannels,
each with the Rayleigh distribution. Hence, the sum–rate of
the MIMO broadcast subchannel, viewed from transmitter , is
approximated by [20]

(51)

By summation of the approximated formulas for the two MIMO
broadcast subchannels, (48) is obtained.

In [19], it is proven that the power offset for a MIMO
Rayleigh channel with transmit and receive antennas is
obtained by (49). By substituting and in (49),
and subtracting (49) from (48),(50) is derived.

V. JOINT DESIGN

The decomposition schemes proposed in Section III simplify
the signaling design and the performance evaluation for the X
channels. However, such decomposition schemes deteriorate the
performance of the system because: i) , , are

chosen such that the interference terms are forced to be zero,
while the statistical properties of the interference should be ex-
ploited to design these filters, ii) , are chosen ran-
domly, while the gain of the channel matrices in the different
directions should be considered in choosing , . For
example, consider an X channel with antennas. In
Section III-A, the receive filters , , are chosen
such that the interference of each broadcast subchannel over the
other one is forced to be zero. In low-SNR regimes, the perfor-
mance of the system is improved by choosing whitening filters
for , , instead of zero-forcing filters. In high SNR,
the whitening filters converge to zero-forcing filters, and the re-
sulting improvement diminishes. Note that in the X channel with

, the transmit filters , , are such that the
entire two-dimensional spaces available at transmitters one and
two are used for signaling. Therefore, we cannot improve the
signaling scheme by modifying , .

In a system with antennas, the same arguments for
, are valid. In this case, the transmit filters ,
, are chosen randomly, therefore the signaling space at each

transmitter is confined to a randomly selected two-dimensional
subspace of a three-dimensional space. One can take advantage
of the degrees of freedom available for choosing to find the
signaling subspaces at transmitters one and two for which the
channels offer the highest gains.

Optimizing the filters and , , depends on the
signaling scheme employed for the MIMO broadcast or mul-
tiple-access subchannels. On the other hand, designing the sig-
naling schemes for the subchannels depends on the selected fil-
ters. Therefore, we have to jointly develop the design parame-
ters. In what follows, we elaborate a joint design scheme based
on a generalized version of zero-forcing dirty paper coding (ZF-
DPC) scheme, presented in [21], for the resulting broadcast
subchannels in Scheme I. In this scheme, the number of data
streams , , and also integer parameters ,

are selected as explained in Section III-A. In addition, we

use filters and , , in a similar fashion as shown in
Fig. 1, but with a different design.

According to the generalized ZF-DPC, explained in [21] for
MIMO broadcast channels, the vectors , , are equal to
linear superpositions of some modulation vectors where the data
is embedded in the coefficients. The modulation matrix

is defined as

(52)

where , , denote the modulation vectors,
employed by transmitter , to send data streams to receiver
one and data streams to receiver two. The vectors and
are equal to

(53)

(54)

where the vector represents the
streams of independent data. The covariance of the vector is

denoted by the diagonal matrix , i.e., , .
At transmitter , the data streams which modulate the vectors



www.manaraa.com

MADDAH-ALI et al.: COMMUNICATION OVER MIMO X CHANNEL 3465

, , and ,
are intended for the receiver one, and the data streams which
modulate the vectors , , and

, are intended for receiver
two. We define and as

(55)

and

(56)

which represent the data streams, sent by transmitter to re-
ceivers one and two, respectively. The modulation and demod-
ulation vectors are designed such that the data stream has no
interference over the data stream for . Choosing the code-
word for the data stream , the interference of the data stream
over data stream is noncausally known, and therefore can be
effectively canceled out based on the dirty-paper coding (DPC)
theorem [22]. However, if the data streams and are sent to
the same receiver, none of them has interference over the other,
and DPC is not needed. At receiver one, to decode , the signal
coming from transmitter two, i.e., , is treated as inter-
ference, therefore, the covariance of the interference plus noise

is equal to

(57)

where is defined in (107). The received vector is passed

through the whitening filter . The output of

is passed through the filter which maximizes the effec-

tive SNR. The design of , , is explained later.
Similarly, to decode at receiver two, the signal from trans-
mitter two, i.e., is treated as interference. The re-
ceived vector is passed through the whitening filter

, where

(58)

The output of is passed through the filter which maxi-
mizes the effective SNR.

Let us assume that the modulation matrix , the covariance
matrix , and the transmit filter are known, therefore, one

can compute and . In the sequel, we explain how to
choose , , , , and .

The following algorithm is proposed to compute the columns
of the matrix . The proposed algorithm
is greedy in the sense that in each step, the direction along
which the corresponding link has the highest gain is added to the
columns of the matrix . In the algorithm, the following four
sets of vectors are sequentially included in the columns of :
i) the mutually orthogonal directions for which the equiv-

alent channel matrix has the highest gains, ii) the
mutually orthogonal directions for which the equivalent channel

matrix has the highest gains, iii) if , a set
of directions such that , iv) if ,

a set of directions such that . Each set of vec-
tors are chosen orthogonal to the previously selected columns.
In what follows, we detail the algorithm in four stages.

Stage I
• Choose , , as right singular vec-

tors (RSV) corresponding to the largest singular

values of the matrix .
Stage II

• Choose such that

forms a unitary matrix.
• Choose , , as the RSVs corre-

sponding to the largest singular values of the matrix

.
• Let , .

Stage III
• If , then choose ,

, such that

Stage IV
• If , then choose ,

, such that

The intuition behind this order of dimension selection is as
follows. Consider transmitter one. and space dimen-
sions are needed to send and data streams to receivers
one and two, respectively. However, out of di-
mensions and out of dimensions have to be chosen
from and , respectively. In this algorithm,
and dimensions are first chosen in a recursive and greedy
manner to exploit the highest gains through the channel ma-
trices and , respectively. Then, the transmit space is
extended to include and dimensions from

and , respectively. Apparently, if this order is
changed and the dimensions are selected initially from
and , then we may lose the dimensions which provide
highest gains through and .

After computing , the broadcast subchannel with and

, defined in Section III-A as , , is
formed. Here, we explain how to choose the modulation and de-
modulation vectors for this broadcast subchannel, based on the
scheme presented in [21]. In the scheme presented in [21], the
modulation vectors for different users can be selected iteratively
in a specific order. Here, the modulation vectors are selected in
the following order: i) modulation vectors for receiver one,
ii) modulation vectors for receiver two, iii) mod-
ulation vectors for receiver one, iv) modulation vec-
tors for receiver two. Here is the detail of the proposed scheme
to find the modulation and the demodulation vectors.

Step one–Choosing modulation vectors for receiver
one
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1) Respectively choose and , , as
RSV and left singular vector (LSV), corresponding to
the th largest singular value of the matrix .
Therefore, we have [23]

(59)

(60)

With the above choice of the matrix , it is easy to see
that is equal to the column of the identity matrix

, for .
Step two–Choosing modulation vectors for receiver

two
1) Define , , such that

forms a

unitary matrix. Then, define as

(61)

2) Respectively choose and as the RSV and LSV,
corresponding to the th largest singular value of

the matrix . Therefore, we have

(62)

(63)

Then, let

(64)

It is easy to see that with the aforementioned choice
of , is equal to the column of the
matrix , for .

Step three–Choosing modulation vectors for
receiver one
1) Define , , such that

forms a unitary matrix. Then, define as

(65)
2) Respectively choose and as the RSV

and LSV, corresponding to the largest singular

value of the matrix , denoted by , for
. Therefore, we have

(66)

(67)

Then

(68)

Step four–Choosing modulation vectors for re-
ceiver two
1) Define , , such that

forms a

unitary matrix. Then, define as

(69)

2) Respectively choose and as RSV
and LSV, corresponding to the th largest singular

value of the matrix , denoted by , for
. Therefore, we have

(70)

(71)

Then, let

(72)

As shown in [21], by using this scheme, the broadcast
channel, viewed from transmitter one is reduced to a set of
parallel channels with gains , and ,

. For power allocation, the power can be
equally divided among the data streams or the water-filling
algorithm can be used for optimal power allocation [24].

Similar procedure is applied for transmitter two to compute
, , , , , where

(73)

(74)

(75)

(76)

Note that to compute , , and , we need to know ,
, and ( , and are functions of , , and ), and

vice versa. To derive the modulation vectors, we can randomly
initialize the matrices, and iteratively follow the scheme, until
the resulting matrices converge. Simulation results show that the
algorithm converges very fast.

It is possible to improve the decomposition Scheme II, pre-
sented in Appendix I, by jointly design the filters.

VI. SIMULATION RESULTS

In the simulation part, we assume that the entries of the
channel matrices have complex normal distribution with zero
mean and unit variance.
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Fig. 6. The sum–capacity of point-to-point MIMO channel with four transmit and six receive antennas, and the sum–rate of the X channel with (2; 2; 3; 3) antennas
achieved based on decomposition Scheme I.

Fig. 7. The sum–rate of the X channels using ZF-DPC scheme over the decomposed channels, the sum–rate of the X channels achieved by jointly designed
ZF-DPC scheme, and the sum–rate of the interference channel with three and four data streams.

Fig. 6 shows the sum–rate versus power for a X channel
with antennas, where the decomposition scheme
presented in Section III is employed. Therefore, the achievable
sum–rate is indeed equal to twice of the sum–capacity of a
MIMO broadcast channel with two transmit antennas, and two
users each with one antenna. The sum–capacity of the MIMO
broadcast channel is fully characterized in [25]–[27]. To com-
pute the sum–capacity, the effective algorithm presented in [28]
is utilized. As a comparison, the capacity of a point-to-point
MIMO channel with four transmit and six receive antennas
is depicted. It is easy to see that both curves have the same
slope (multiplexing gain). In addition, as expected by (50), the

sum–rate of the X channel has 6.2-dB power loss in comparison
with that of the MIMO channel.

Fig. 7 shows the sum–rate versus power for an X channel with
and antennas, where ZD-DPC scheme is

used. As it is shown in Fig. 7, for the case of antennas,
the joint design scheme has better performance than the de-
composition scheme in low-SNR regimes. The improvement is
mainly due to utilizing whitening filters instead of zero-forcing
filters. It is easy to see that in the high SNR, the whitening fil-
ters converge to zero-forcing filters. Note that in this case, opti-
mizing , offers no improvement. The reason is that
the entire two-dimensional space available at each transmitter is
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utilized and there is no room for improvement. As depicted in
Fig. 7, for the case of -antenna X channel, the joint
design scheme has better performance as compared with the de-
composition scheme in both high- and low-SNR regimes. The
improvement relies on the fact that in this case at each trans-
mitter, a two-dimensional subspace of the three-dimensional
space is needed for signaling. By using the scheme presented
in Section V, a subspace for which the channel gains are op-
timal is chosen. Note that the sum–rate of the -an-
tenna X channel, where the decomposition scheme is applied, is
the same as that of -antenna X channel. The reason is
that in this case, the matrices and are randomly selected
from the set of unitary matrices. Therefore, the resulting
system is equivalent to a -antenna X channel.

Fig. 7 also shows the curves of the sum–rate versus the total
power for -antenna interference channels for two sig-
naling scenarios. In the first scenario, each transmitter sends
two data streams to the corresponding receiver. Each receiver
employs optimal whitening filter, treating the signal coming
from the other transmitter as interference. In this case, there is
only one interference-free dimension available at each receiver.
Therefore, the rate of one of the data streams sent by each trans-
mitter linearly increases with the logarithm of the total power,
while the rate of the other data stream converges to a constant
number. Therefore, this scheme achieves the overall MG of two.
In the second scenario, transmitters one and two send two and
one data streams, respectively. of the total power is allo-
cated to transmitter one and the rest is allocated to transmitter
two. In this case, two of three space dimensions at receiver one
is available for the signal coming from transmitter one. In addi-
tion, one out of three space dimensions at receiver two is avail-
able for the signal coming from transmitter two. Therefore, this
scheme achieves the overall MG of three. As mentioned ear-
lier, this is the optimal MG for -antenna interference
channel, which is less than achievable MG by the corresponding
X channel.

VII. CONCLUSION

In a multiple-antenna system with two transmitters and two
receivers, a new noncooperative scenario of data communica-
tion is studied in which each receiver receives data from both
transmitters. It is shown that by using some linear filters at the
transmitters and at the receivers, the system is decomposed
into two broadcast or two multiple-access subchannels. Using
the decomposition scheme, it is shown that this signaling
method outperforms other known noncooperative schemes in
terms of the achieved multiplexing gain. In particular, it is
shown that for a system with
and antennas, the multiplexing
gain of is achievable, which is the MG of the system
where full cooperation between the transmitters or between the
receivers is provided.

APPENDIX I
SCHEME II–DECOMPOSITION OF THE SYSTEM INTO

TWO MULTIPLE-ACCESS SUBCHANNELS

This scheme is indeed the dual of the scheme one, detailed in
Section III-A. As depicted in Fig. 3, in this scheme, the parallel

transmit filters and are employed at transmitter one,
and the parallel transmit filters and are employed at
transmitter two. Therefore, the transmitted vectors are equal to

(77)

(78)

where contains data streams from transmitter
intended to receiver . The transmit filter nulls out the in-

terference of the data streams, sent from transmitter one to
receiver one, at receiver two. Similarly, the transmit filter
nulls out the interference of the data streams sent from trans-
mitter one to receiver two at receiver one. In a similar fashion,
at transmitter two, the two parallel transmit filters and
are employed.

At receiver terminal, the received vector is passed through
the receive filter , where

(79)

The functionalities of the receive filters , , are i)
to map the received signal in a -dimensional sub-
space, which allows us to null out the interference terms by
using transmit filters , , and ii) to exploit the null
spaces of the channel matrices to attain the highest MG.

Similar to the previous section, it is shown that if the num-
bers of data streams , , satisfy a set of inequali-
ties, then it is possible to deign and to meet the desired
features explained earlier. Consequently, the system is decom-
posed into two noninterfering MIMO multiple-access subchan-
nels (see Fig. 4).

Next, we explain how to select the design parameters in-
cluding the numbers of data streams , and the
transmit/receive filters. Again, the primary objective is to pre-
vent the saturation of the rate of each stream in the high-SNR
regime. In other words, the MG of the system is

.
Similar to the previous subsection, we define the parameters
, , as follows:

• denotes the dimension of ;

• denotes the dimension of ;

• denotes the dimension of ;

• denotes the dimension of .
To facilitate the derivations, we use the auxiliary variables
, , and , for . For each case, the variables

and are computed directly as a function of and for
. Then, the auxiliary integer variables , ,

are selected such that the following constraints are satisfied:

(80)

(81)

(82)

(83)

(84)

(85)
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Each of the first four inequalities corresponds to one of the pa-
rameters , , in the sense that if , ,
is zero, the corresponding inequality is removed from the set of
constraints. After choosing , , for each case, ,

, are computed as function of , .
Similar to Scheme I, to achieve the highest MG, we choose
, subject to (80)–(85) such that
is maximum.

Next, for each of the four cases, we explain the following.
i) How to compute the auxiliary variables and as a

function of and , .
ii) After choosing the auxiliary variables , ,

satisfying (80)–(85), how to compute , .
iii) How to choose the receive filters , .
iv) How to compute , .
Having completed these steps, the procedure of computing

the filters , , is similar for all cases. Later, we will
show that this scheme decomposes the system into two nonin-
terfering multiple-access channels.

Scheme II–Case I: :
In this case, the system is irreducible Type II. Therefore, the

equivalent system is the same as the original system, i.e.,
, and , . Using the above parame-

ters, we choose , , subject to (80)–(85). Similar to
Scheme I–Case I, we have , . and are
randomly chosen from and ,
respectively.

According to the definition of , , it is easy to see
that

(86)

Scheme II–Case II: :
In this case, at the receiver one, the signal coming

from transmitter two does not have any component in

the -dimensional subspace . This sub-
space can be exploited to increase the number of data
streams sent from transmitter one to receiver one by

without restricting the available signaling space
at transmitter two and at receiver two. Consequently, the
system is reduced to a system with

antennas, or

(87)
It is easy to see that , i.e., the original
system is reducible to Type II. We choose , , sub-
ject to (80)–(85). Then, we have

(88)
is chosen as

(89)

where

(90)

(91)

is randomly selected from .

It is easy to see that

(92)

Scheme II–Case III: and
:

In this case, at receiver one, the signal coming from trans-
mitter two has no component in the -dimensional sub-

space . This subspace can be exploited to increase the
number of data streams sent from transmitter one to receiver one
by without restricting the available signaling space at
transmitter two and at receiver two. In addition, at receiver two,
the signal coming from transmitter two has no component in the

-dimensional subspace . This subspace can
be exploited to increase the number of data streams sent from
transmitter one to receiver two by , without restricting
the available signaling space at transmitter two and at receiver
one. Therefore, the reduced system has an-
tennas, where

(93)

. Therefore, the original system is
reducible to Type II. After choosing , , subject
to (80)–(85), we have

(94)

is chosen as

(95)

where

(96)

(97)

is chosen as

(98)

where

(99)

(100)

Therefore, we have

(101)

Scheme II–Case IV: and
:

In this case, i) -dimensional subspace is
utilized to increase the number of data streams sent from trans-
mitter one to receiver one by , ii) -di-

mensional subspace is utilized to increase the number
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of data streams sent from transmitter two to receiver one by
. Therefore, we have

(102)

where , i.e., the original system is
reducible to Type II. is chosen as

(103)

where

(104)

(105)

is randomly selected from . In this case, we
have

(106)

The next steps of the algorithm are the same for all above
cases. We define

(107)

, , are chosen such that

(108)

(109)

(110)

(111)

According to the definition of , we can always choose such

matrices. Clearly, any signal passed through the filters and

has no interference at the output of the filter . Similarly,

any signal passed through the filters and has no inter-
ference at the output of the filter . We define

(112)

and

(113)

This system is decomposed into two noninterfering multiple-ac-
cess channels: i) the multiple-access channel viewed by receiver
one with channels and , modeled by (see Fig. 4)

(114)

and ii) the multiple-access channel viewed by receiver two with
channels and , modeled by (see Fig. 4)

(115)
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